This text is available in english, french and portuguese

Capítulo 1 - fundamentos da navegação astronômica.

"E pur si muove" Galileu Galilei

Ângulos, ângulos, ângulos...

Ângulos, como veremos neste capítulo, são a matéria prima do astrônomo. As posições dos astros e dos objetos sobre a Terra são dadas por ângulos. O sextante é um instrumento que mede ângulos. Até as distâncias na superfície da Terra podem ser expressas na forma de ângulos. Por esta razão, cabe uma pequena discussão sobre o assunto.

Os ângulos são medidos em graus, minutos e segundos. A circunferência completa tem 360°. Um grau corresponde a 60 minutos. Os segundos de grau não são usados na navegação, uma vez que o sextante não tem precisão suficiente para medi-los. A menor unidade de ângulo para o navegador astronômico é o décimo de minuto.

A milha náutica (=1852 m) é uma medida que foi definida convenientemente de modo a simplificar as conversões entre ângulos e distâncias. Uma milha náutica corresponde a um arco de um minuto de grau sobre a superfície terrestre. A qualquer momento podemos converter ângulos de graus para milhas e vice-versa. Ângulos e distâncias são, portanto, equivalentes. Uma exceção são os minutos de longitude, que valem uma milha somente nas proximidades do Equador terrestre.

Uma outra equivalência importante da navegação é entre horas e graus de longitude. Como a Terra faz uma volta de 360° a cada 24 horas, cada hora corresponde a 15° de longitude.

A Terra e a Esfera Celeste

Vamos imaginar por um momento que a Terra esteja no centro do universo. Embora hoje saibamos que este modelo é pouco realista, ele foi adotado por muito séculos e pode nos ajudar a compreender a navegação astronômica. Imaginemos que em torno da Terra está uma outra esfera maior, centrada no mesmo ponto, onde os astros estão fixados, como se estivessem pintados na sua parede. Esta outra bola é chamada de Esfera Celeste.


fig. 1 - A Terra e a Esfera Celeste

Para especificar nossa posição na Terra, usamos um sistema de coordenadas que consiste de dois ângulos. A latitude é a distância em graus medida a partir do Equador terrestre na direção Norte-Sul. A longitude é o ângulo no polo entre os meridianos de Greenwich (na Inglaterra) e do ponto considerado (fig. 2).


fig.2 - Sistema de coordenadas terrestres

De modo análogo, a posição de um astro na esfera celeste pode ser descrita por dois ângulos. À medida equivalente à latitude do astro na esfera celeste chamamos declinação. A declinação é medida na direção Norte-Sul a partir do equador celeste. A medida correspondente à longitude do astro na Esfera Celeste é denominada Ascensão Reta, ou AR. A figura 3 mostra o sistema de coordenadas celestes. Assim como a longitude é medida a partir de um meridiano arbitrário (Greenwich), a Ascensão Reta é medida a partir do chamado Ponto Vernal (também chamado de primeiro ponto de Áries).


fig.3 - Sistema de coordenadas celestes

O movimento aparente dos astros

As estrelas tem suas posições quase fixas na Esfera Celeste. O Sol, a Lua e os planetas se movem ao longo do ano, mas este movimento é lento quando comparado ao movimento devido à rotação da Terra. Consideremos por hora que os astros tem posições fixas na Esfera Celeste.

Usando ainda o conceito da Terra como centro do universo, vamos imaginar que a Terra esteja parada e que a Esfera Celeste gire em torno dela, completando uma volta a cada 24 horas. O Eixo de rotação da Esfera Celeste passa pelos polos da Terra e da Esfera Celeste. Os equadores da Terra e da Esfera Celeste estão, assim, no mesmo plano (fig. 1).

Os astros, fixos na Esfera Celeste, também giram em torno da Terra. Os polos celestes, estando no eixo de rotação, ficam parados no céu. Assim, um astro situado próximo a um polo da Esfera Celeste parecerá estar estático quando visto da Terra. É o caso da estrela Polaris, que se situa nas proximidades do polo Norte Celeste (sua declinação é de 89°05'N). Ela está sempre na direção Norte. É fácil, portanto, determinar o Norte pela estrela Polaris. Infelizmente ela não pode ser vista aqui do hemisfério Sul e não existe nenhuma estrela tão convenientemente posicionada no Polo Sul Celeste.

Determinação da posição pelos astros

Suponha agora que em um determinado instante traçamos uma reta ligando o centro de um astro ao centro da Terra. O ponto onde esta reta "fura" a superfície da Terra é chamado de Posição Geográfica do astro, ou simplesmente PG (fig.4). Um observador colocado sobre a PG de um astro verá este astro diretamente na vertical, sobre a sua cabeça.


Fig.4 - Posição Geográfica do Astro

Uma vez que o astro gira junto com a Esfera Celeste, a sua PG se move na superfície da Terra. A PG do Sol, por exemplo, se move a uma velocidade de aproximadamente 900 nós - cerca de 1 milha náutica a cada 4 segundos. Outros astros mais próximos dos polos se movem mais lentamente. A PG de Polaris se move bem lentamente (cerca de 14 nós), uma vez que ela está próxima do Polo Norte.

Como os equadores terrestre e celeste estão no mesmo plano, a latitude da PG é igual à declinação do astro. A longitude da PG é chamada de Ângulo Horário em Greenwich ou AHG, numa alusão à correspondência entre horas e longitude.

Podemos determinar, com auxílio do Almanaque Náutico, a Posição Geográfica (AHG e declinação) de um astro em qualquer instante. Para isso é de fundamental importância que saibamos o momento exato que nos interessa. Como vimos, 4 segundos de erro podem significar até 1 milha de erro na PG do astro. Isto dá idéia da importância de se ter um relógio com a hora precisa para a navegação.

Um outro ponto importante é o Zênite. O Zênite é o ponto da esfera celeste situado na vertical, sobre a posição do navegador. A reta que une o Zênite ao centro da Terra fura a superfície terrestre na posição do navegador, a posição que pretendemos determinar. Temos então as seguintes correspondências entre pontos:

Superfície da Terra Esfera Celeste
Posição Geográfica do Astro Centro do Astro
Posição do navegador Zênite

Na figura abaixo, a PG do astro é representada pela letra X e o Zênite pela letra Z.


fig. 5 - PG do astro e Zênite

A distância XZ do ponto X (PG do astro) ao ponto Z do navegador é chamada de distância Zenital. Esta distância pode ser expressa em tanto em milhas como em graus, já que representa um arco sobre a superfície esférica da Terra.

O ângulo horizontal que XZ forma com o norte verdadeiro é chamado Azimute (Az) do astro (fig. 6). Azimute, assim, é a direção ou rumo em que se encontra a PG do astro.


fig. 6 - Azimute do astro

Os astros estão a grande distância da Terra de modo que os raios de luz provenientes deles que incidem sobre a PG (ponto X) e sobre o navegador (ponto Z) são paralelos. Deste modo, conforme ilustrado na figura 7, podemos concluir que a distância zenital (XZ), medida em graus, é igual ao ângulo que o navegador observa entre o astro e a vertical. Vou repetir. A distância zenital, medida em graus, é igual ao ângulo que o navegador observa entre o astro e a vertical.


fig.7 - Altura e distância zenital de um astro

É difícil, porém, medir este ângulo dada a dificuldade de se determinar com precisão a direção vertical. É mais fácil medir o ângulo formado entre a horizontal e o astro. Este importante ângulo para a navegacão é denominado altura (H) do astro. A altura do astro é tomada com o sextante na vertical, medindo-se o ângulo entre o horizonte e o astro. Ainda pela figura 7, podemos ver que a distância zenital é igual a 90° menos a altura do astro.

Vimos como determinar a distância zenital de um astro usando o sextante. A distância zenital e a PG do astro, contudo, ainda não são suficientes para determinarmos nossa posição. Com esses valores, sabemos somente que nossa posição real está sobre o círculo cujo o centro é a PG do astro e o raio é a distância zenital. Este círculo é chamado círculo de altura. A figura 8 mostra um círculo de altura. O ponto X é a PG do astro.


fig.8 - Círculo de altura

Qualquer observador posicionado sobre este círculo vê o astro com a mesma altura, só que em Azimutes diferentes. No exemplo da figura, suponhamos que um navegador posicionado sobre o círculo observe o astro a uma altura de 65°. Como já vimos, distância zenital é 90°-H, ou 25°. Para determinar a distância zenital em milhas, multiplicamos por 60, pois cada grau equivale a 60 milhas. Assim, a distância zenital do exemplo da figura, que é também o raio do círculo, é de 1500 milhas.

Se pudéssemos determinar com a bússola a direção exata em que se encontra a PG do astro - o Azimute - poderíamos dizer em que ponto do círculo de altura estamos. Esta determinação, contudo, não é possível com a precisão necessária à navegação. Ainda no exemplo da figura 8, um erro de apenas 3°, normal em leitura de bússolas, corresponde a um erro de 78 milhas na posição!

Tomemos então uma estimativa de nossa posição. Por mais perdidos que estejamos, sempre é possível estimar mais ou menos nossa posição. Poderemos, a partir da Posição Geográfica do astro (obtida no Almanaque Náutico) e da distância zenital (calculada com a altura do astro medida com o sextante), determinar o erro de nossa estimativa na direção do astro. Este erro pode tanto ser no sentido do astro como no sentido contrário ao astro. É chamado de Delta.

2a parte do Capítulo 1 |Índice do manual

e-mail orion
©Copr 91-96 Omar F. Reis